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Abstract.—The total-evidence approach to divergence time dating uses molecular and morphological data from extant
and fossil species to infer phylogenetic relationships, species divergence times, and macroevolutionary parameters in a
single coherent framework. Current model-based implementations of this approach lack an appropriate model for the tree
describing the diversification and fossilization process and can produce estimates that lead to erroneous conclusions. We
address this shortcoming by providing a total-evidence method implemented in a Bayesian framework. This approach uses
a mechanistic tree prior to describe the underlying diversification process that generated the tree of extant and fossil taxa.
Previous attempts to apply the total-evidence approach have used tree priors that do not account for the possibility that
fossil samples may be direct ancestors of other samples, that is, ancestors of fossil or extant species or of clades. The fossilized
birth–death (FBD) process explicitly models the diversification, fossilization, and sampling processes and naturally allows
for sampled ancestors. This model was recently applied to estimate divergence times based on molecular data and fossil
occurrence dates. We incorporate the FBD model and a model of morphological trait evolution into a Bayesian total-evidence
approach to dating species phylogenies. We apply this method to extant and fossil penguins and show that the modern
penguins radiated much more recently than has been previously estimated, with the basal divergence in the crown clade
occurring at ∼12.7 Ma and most splits leading to extant species occurring in the last 2 myr. Our results demonstrate that
including stem-fossil diversity can greatly improve the estimates of the divergence times of crown taxa. The method is
available in BEAST2 (version 2.4) software www.beast2.org with packages SA (version at least 1.1.4) and morph-models
(version at least 1.0.4) installed. [Birth–death process; calibration; divergence times; MCMC; phylogenetics.]

Establishing the timing of evolutionary events is
a major challenge in biology. Advances in molecular
biology and computer science have enabled increasingly
sophisticated methods for inferring phylogenetic trees.
While the molecular data used to build these phylogenies
are rich in information about the topological aspects
of trees, these data only inform the relative timing of
events in units of expected numbers of substitutions
per site. The fossil record is frequently used to convert
the timescale of inferred phylogenies to absolute time
(Zuckerkandl and Pauling 1962; 1965). Exactly how to
incorporate information from the fossil record into a
phylogenetic analysis remains an active area of research.

Bayesian Markov chain Monte Carlo (MCMC)
methods are now the major tool in phylogenetic
inference (Yang and Rannala 1997; Mau et al. 1999;
Huelsenbeck and Ronquist 2001) and are implemented
in several widely used software packages (Lartillot et al.
2009; Drummond et al. 2012; Ronquist et al. 2012b;
Bouckaert et al. 2014). To date species divergences
on an absolute time scale, Bayesian approaches must
include three important components to decouple the
confounded rate and time parameters: (i) a model
describing how substitution rates are distributed across
lineages; (ii) a tree prior characterizing the distribution
of speciation events over time and the tree topology; and
(iii) a way to incorporate information from the fossil or
geological record to scale the relative times and rates to
absolute values. Relaxed molecular clock models act as
prior distributions on lineage-specific substitution rates

and their introduction has greatly improved divergence
dating methods (Thorne et al. 1998; Drummond et al.
2006; Rannala and Yang 2007; Drummond and Suchard
2010; Heath et al. 2012; Li and Drummond 2012). These
models do not assume a strict molecular clock, instead
they allow each branch in the tree to have its own rate
of molecular evolution drawn from a prior distribution
of rates across branches. Stochastic branching models
describing the diversification process that generated the
tree are typically used as prior distributions for the
tree topology and branching times (Yule 1924; Kendall
1948; Nee et al. 1994; Rannala and Yang 1996; Yang
and Rannala 1997; Gernhard 2008; Stadler 2009). When
diversification models and relaxed-clock models are
combined in a Bayesian analysis, it is possible to estimate
divergence times on a relative time scale. External
evidence, however, is needed to estimate absolute node
ages.

Various approaches have been developed to
incorporate information from the fossil record or
biogeographical dates into a Bayesian framework to
calibrate divergence time estimates (Rannala and Yang
2003; Thorne and Kishino 2005; Yang and Rannala
2006; Ho and Phillips 2009; Heath 2012; Heled and
Drummond 2012, 2015; Parham et al. 2012; Silvestro et al.
2014). Calibration methods (also called “node dating”)
are the most widely used approaches for dating trees
(Ho and Phillips 2009) where absolute branch times are
estimated using prior densities for the ages of a subset
of divergences in the tree. The placement of fossil-based

57

http://www.beast2.org


58 SYSTEMATIC BIOLOGY VOL. 66

calibration priors in the tree is ideally determined from
prior phylogenetic analyses that include fossil and
extant species, which could be based on analysis of
morphological data alone, analysis of morphological
data incorporating a backbone constraint topology
based on molecular trees, or simultaneous analysis of
combined morphological and molecular data-sets. In
practice, however, fossil calibrations are often based
on identifications of apomorphies in fossil material or
simple morphological similarity.

Node calibration using fossil constraints has two main
drawbacks. First, having identified fossils as belonging to
a clade, a researcher needs to specify a prior distribution
on the age of the common ancestor of the clade. Typically
the oldest fossil in the clade is chosen as the minimum
clade age but there is no agreed upon method of
specifying the prior density beyond that. One way to
specify a prior calibration density is through using the
fossil sampling rate that can be estimated from fossil
occurrence data (Foote and Raup 1996). However, this
approach must be executed with caution and attention to
the quality of the fossil record for the clade of interest, as
posterior estimates of divergence times are very sensitive
to prior calibration densities of selected nodes (Warnock
et al. 2012, 2015; Dos Reis and Yang 2013; Zhu et al. 2015)
meaning that erroneous calibrations lead to erroneous
results (Heads 2012).

The second major concern about node calibration is
that the fossilization process is modeled only indirectly
and in isolation from other forms of data. A typical node-
dating analysis is sequential: it first uses morphological
data from fossil and extant species to identify the
topological location of the fossils within a given extant
species tree topology, then uses fossil ages to construct
calibration densities, and finally uses molecular data
to estimate the dated phylogeny. Treating the different
types of data in this sequential manner implies an
independence between the processes that produce the
different types of data, which is statistically inaccurate
and errors at any step can propagate to subsequent
analyses. Furthermore, at the last step in the sequential
analysis, multiple different prior distributions are
applied to estimate the dated phylogeny: a tree prior
distribution and calibration distributions. Since these
distributions all apply to the same object, they interact
and careful consideration must be given to their
specification so as to encode only the intended prior
information (Heled and Drummond 2012; Warnock
et al. 2015). There is currently no efficient general
method available to coherently specify standard tree
priors jointly with calibration distributions (Heled and
Drummond 2015).

In the total-evidence approach to dating (Lee et al.
2009; Pyron 2011; Ronquist et al. 2012a), one specifies
a probabilistic model that encompasses the fossil data,
molecular data and morphological data and then jointly
estimates parameters of that model, including a dated
phylogeny, in a single analysis using all available
data. It builds on previously described methods for
combining molecular and morphological data to infer

phylogenies (Nylander et al. 2004) using a probabilistic
model of trait evolution (the Mk model of Lewis
2001). The total-evidence approach to dating can be
applied by employing a clock model and a tree prior
distribution to calibrate the divergence times. The tree
prior distribution describes the diversification process
where fossil and extant species are treated as samples
from this process. The placement of fossils and absolute
branch times are determined in one joint inference
rather than in separate analyses. The combination of
clock models and substitution models for molecular
and morphological data and a model of the process
that generates dated phylogenetic trees with fossils
comprises a full probabilistic model that generates all
data used in the analysis.

This approach can utilize all available fossils as
individual data points. In contrast, the node calibration
method only directly incorporates the age of the oldest
fossil of a given clade, typically as a hard minimum for
the clade age. The overall fossil record of the clade can
be indirectly incorporated as the basis for choosing a
hard or soft maximum or to justify the shape of a prior
distribution, however, individual fossils aside from the
oldest will not contribute directly (except perhaps if they
are used to generate a confidence interval).

Although total-evidence dating overcomes limitations
of other methods that use fossil evidence to date
phylogenies, some aspects of the method still need to
be improved (Arcila et al. 2015). One improvement is
using better tree prior models. Previous attempts at
total-evidence dating analyses have used uniform, Yule,
or birth–death tree priors that do not model the fossil
sampling process and do not allow direct ancestors
among the sample (e.g., Pyron 2011; Ronquist et al. 2012a;
Wood et al. 2013). However, the probability of ancestor–
descendant pairs among fossil and extant samples is not
negligible (Foote 1996). Moreover, ancestor–descendant
pairs need to be considered when incomplete and
nonidentified specimens are included in the analyses
because such specimens might belong to the same single
lineages as other better preserved fossils.

A good choice of the tree prior model is important for
dating methods due to the limited amount of fossil data.
Dos Reis and Yang (2013) and Zhu et al. (2015) showed
that calibration methods are not statistically consistent,
that is, increasing the amount of sequence data with
a fixed number of calibration points does not decrease
the uncertainty in divergence time estimates. Zhu et al.
(2015) conjectured that total-evidence approaches are
not statistically consistent, implying that the speciation
process assumptions play a significant role in dating
phylogenies.

The fossilized birth–death (FBD) model (Stadler 2010;
Didiera et al. 2012; Stadler et al. 2013) explicitly models
the fossilization process together with the diversification
process and accounts for the possibility of sampled
direct ancestors. Heath et al. (2014) used this model
to estimate divergence times in a Bayesian framework
from molecular data and fossil occurrence dates on a
fixed tree topology. A comparison of different divergence
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dating methods showed that total-evidence analyses
with simple tree prior models estimated significantly
older divergence ages than analyses of molecular data
and fossil occurrence dates with the FBD model (Arcila
et al. 2015).

Until recently, combining the FBD model with
a total-evidence dating approach was complicated
by the fact that existing implementations of the
MCMC algorithm over tree space did not allow
trees with sampled ancestors. Gavryushkina et al.
(2014) addressed this problem and enabled full
Bayesian inference using FBD model in the BEAST2
software (Bouckaert et al. 2014) with the SA package
(https://github.com/CompEvol/sampled-ancestors).
This extended the Heath et al. (2014) method by allowing
uncertainty in the tree topology of the extant species
and placement of fossil taxa. Additionally, Zhang et al.
(2016) implemented a variant of the FBD process that
accounts for diversified taxon sampling and applied
this to a total-evidence dating analysis of Hymenoptera
(Ronquist et al. 2012a). This study demonstrated the
importance of modeling the sampling of extant taxa
when considering species-rich groups (Höhna et al.
2011).

Here we implement total-evidence dating with
the FBD model by including morphological data to
jointly estimate divergence times and the topological
relationships of fossil and living taxa. We applied
this method to a fossil-rich data set of extant
and fossil penguins, comprising both molecular and
morphological character data (Ksepka et al. 2012). Our
analyses yield dated phylogenies of living and fossil
taxa in which most of the extinct species diversified
before the origin of crown penguins, congruent with
previous estimates of penguin relationships based on
parsimony analyses (Ksepka et al. 2012). Furthermore,
our analyses uncover a significantly younger age for
the most recent common ancestor (MRCA) of living
penguins than previously estimated (Baker et al. 2006;
Brown et al. 2008; Subramanian et al. 2013; Jarvis et al.
2014; Li et al. 2014).

MATERIALS AND METHODS

MCMC Approach
We developed a Bayesian MCMC framework for

analysis of morphological and molecular data to infer
divergence dates and macroevolutionary parameters.
The MCMC algorithm takes molecular sequence data
from extant species, morphological data from extant
and fossil species and fossil occurrence dates (or fossil
occurrence intervals) as input data and simultaneously
estimates dated species phylogenies (tree topology and
divergence times), macroevolutionary parameters, and
substitution and clock model parameters. We assume
here that the gene phylogeny coincides with the species
phylogeny. The state space of the Markov chain is a dated
species phylogeny, T , substitution and clock model

parameters, �̄, and tree prior parameters, �̄. The posterior
distribution is

f (T ,�̄,�̄|D,�̄)∝ f (D,�̄|T ,�̄,�̄)f (T ,�̄,�̄)

= f (D|T ,�̄)f (�̄|T )f (T |�̄)f (�̄)f (�̄),

where D is a matrix of molecular and morphological
data and �̄ is a vector of time intervals assigned to
fossil samples. On the right-hand side of the equation,
there is a tree likelihood function, f (D|T ,�̄), a tree prior
probability density, f (T |�̄), prior probability densities
for the parameters, and a probability density, f (�̄|T ),
of obtaining stratigraphic ranges �̄, given T (remember,
that T defines the exact fossilization dates). The tree
prior density f (T |�̄) is defined by equation (2) or (7) in
Gavryushkina et al. (2014).

The full model describes the tree branching process,
morphological and molecular evolution along the tree,
fossilization events, and assignment of the stratigraphic
ranges to fossil samples, since we do not directly
observe when a fossilization event happened. Thus, the
stratigraphic ranges for the fossils are considered as data.
We do not explicitly model the process of the age range
assignment but assume that for a fossilization event
that happened at time t the probability of assigning
ranges �1>�2 does not depend on t (as a function) if
�1> t≥�2 and is zero otherwise. This implies that f (�̄|T )
is a constant whenever the sampling times are within �̄
intervals and zero otherwise and we get:

f (T ,�̄,�̄|D,�̄)∝ f (D|T ,�̄)�(T ∈T�̄)f (T |�̄)f (�̄)f (�̄), (1)

where T�̄ is a set of phylogenies with sampled nodes
within corresponding �̄ intervals.

Modeling the Speciation Process
We describe the speciation process with the FBD

model conditioning on sampling at least one extant
individual (equation (2) in Gavryushkina et al. 2014).
This model assumes a constant rate birth–death process
with birth rate � and death rate � where fossils are
sampled through time according to a Poisson process
with a constant sampling rate � and extant species are
sampled at present with probability 	. The process starts
at some time tor in the past—the time of origin, where
time is measured as a distance from the present. This
process produces species trees with sampled two-degree
nodes which we call sampled ancestors (following
Gavryushkina et al. 2013; 2014). Such nodes represent
fossil samples and lie directly on branches in the tree.
They are direct ancestors to at least one of the other fossils
or extant taxa that has been sampled.

We need to clarify what we mean by sampling. We
have two types of sampling: fossil sampling and extant
sampling. Suppose an individual from a population
represented by a branch in the full species tree fossilized
at some time in the past. Then this fossil was discovered,
coded for characters and included in the analysis. This
would correspond to a fossil sampling event. Further,
if an individual from one of the extant species was

http://github.com/CompEvol/sampled-ancestors


60 SYSTEMATIC BIOLOGY VOL. 66

sequenced or recorded for morphological characters and
these data are included to the analysis we say that an
extant species is sampled. Suppose one sampled fossil
belongs to a lineage that gave rise to a lineage from which
another fossil or extant species was sampled. In such a
case we obtain a sampled ancestor, that is, the former
fossil is a sampled ancestor and the species to which it
belongs is ancestral to the species from which the other
fossil or extant species was sampled. If two fossils from
the same taxon with different age estimates are included
in an analysis, the older fossil has the potential to be
recovered as a direct ancestor and would be considered
a sampled ancestor under our model.

In most cases, we re-parameterize the FBD model with
(tor,d,
,s,	) where

d=�−� net diversification rate

= �

� turnover rate
s= �

�+� fossil sampling proportion.
(2)

These parameters are commonly used to describe
diversification processes. We also use the standard
parameterization (tor,�,�,�,	) assuming �>� in some
analyses. Note, that the time of origin is a model
parameter as opposed to the previous application of the
FBD model (Heath et al. 2014) where instead, the process
was conditioned on the age of the MRCA, that is, the
oldest bifurcation node leading to the extant species, and
all fossils were assumed to be descendants of that node.
Here, we allow the oldest fossil to be the direct ancestor
or sister lineage to all other samples because there is no
prior evidence ruling those scenarios out.

Bayes Factors
To assess whether there is a signal in the data for

particular fossils to be sampled ancestors we calculated
Bayes factors for each fossil. By definition a Bayes factor
is:

BF= P(D,�̄|H1,M)
P(D,�̄|H2,M)

= P(H1|D,�̄,M)P(H2|M)
P(H2|D,�̄,M)P(H1|M)

,

where H1 is the hypothesis that a fossil is a sampled
ancestor, H2 is the hypothesis that it is a terminal
node, and M is the combined model of speciation
and morphological and molecular evolution. Thus,
P(H1|D,�̄,M) is the posterior probability that a fossil is a
sampled ancestor and P(H2|D,�̄,M) is a terminal node,
and P(H1|M) and P(H2|M) are the corresponding prior
probabilities.

The Bayes factor reflects the evidence contained in
the data for identifying a fossil as a sampled ancestor
and compares the prior probability to be a sampled
ancestor to the posterior probability. However, we could
not calculate the probabilities P(H1|M) and P(H2|M),
so instead we looked at the evidence added by the
morphological data toward identifying a fossil as a
sampled ancestor to the evidence contained in the
temporal data. That is, we replaced prior probabilities

P(H|M) with posterior probabilities given that we
sampled 19 extant species and 36 fossils and assigned age
ranges �̄ to fossils, P(H|�̄,M), and calculated analogues
of the Bayes factors:

B̂F= P(H1|D,�̄,M)P(H2|�̄,M)
P(H2|D,�̄,M)P(H1|�̄,M)

.

To approximate P(H|�̄,M), we sampled from the
distribution:

f (T ,�̄|�̄)∝�(T ∈T�̄)f (T |�̄)f (�̄) (3)

using MCMC. Having a sample from the posterior
distribution (1) and a sample from the conditioned
prior distribution (3) we calculated P(H1|D,�̄,M) and
P(H1|�̄,M) as fractions of sampled trees in which the
fossil appears as a sampled ancestor in corresponding
MCMC samples. Similarly, we calculated P(H2|D,M;�̄)
and P(H2|M;�̄) using trees in which the fossil is a
terminal node.

Data
We analyzed a data set from Ksepka et al. (2012)

consisting of morphological data from fossil and
living penguin species and molecular data from living
penguins. The morphological data matrix used here
samples 36 fossil species (we excluded Anthropornis
sp. UCMP 321023 due to absence of the formal
description for this specimen) and 19 extant species (we
treated the Northern, Southern, and Eastern Rockhopper
penguins as three distinct species for purpose of the
analysis). The original matrix contained 245 characters.
We excluded outgroup taxa (Procellariiformes and
Gaviiformes) because including them would violate
the model assumptions: a uniform sampling of extant
species is assumed, whereas the matrix sampled all
extant penguins but only a small proportion of outgroup
species and also did not sample any fossil taxa from
these outgroups. We excluded characters that became
constant after excluding outgroup taxa, resulting in a
matrix of 202 characters. The morphological characters
included in the matrix ranged from two- to seven-state
characters. The majority of these characters (>95%) have
fewer than four states. Further, 48 of the binary characters
were coded as present/absent. The molecular alignment
comprises the nuclear recombination-activating gene 1
(RAG-1), and the mitochondrial 12S, 16S, cytochrome
oxidase 1 (CO1), and cytochrome b genes. Each region
is represented by more than 1000 sites with 8145 sites in
total. Some regions are missing for a few taxa.

The morphological data-set was originally developed
to resolve the phylogenetic placement of fossil and extant
penguins in a parsimony framework. Thus, efforts were
focused on parsimony-informative characters. Though
some apomorphic character states that are observed
only in a single taxon are included in the data-
set, no effort was made to document every possible
autapomorphy. Thus, such characters can be expected to
be undersampled. As with essentially all morphological
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phylogenetic data-sets, invariant characters were not
scored.

We updated the fossil stratigraphic ages—previously
summarized in Ksepka and Clarke (2010)—to introduce
time intervals for fossil samples as presented in online
Supplementary Material (SM), Table 1 available on
dryad at http://dx.doi.org/10.5061/dryad.44pf8). For
fossil species known from a single specimen, fossil
stratigraphic ages represent the uncertainty related to
the dating of the layer in which the fossil was found.
For fossils known from multiple specimens, the ages
were derived from the ages of the oldest and youngest
specimens.

Morphological Evolution and Model Comparison
We apply a simple substitution model for

morphological character evolution—the Lewis Mk
model (Lewis 2001), which assumes a character can
take k states and the transition rates from one state to
another are equal for all states. We do not model ordered
characters and treated 34 characters that were ordered
in the Ksepka et al. (2012) matrix as unordered.

Evolution of morphological characters has a different
nature from evolution of DNA sequences and, therefore,
requires different assumptions. In contrast to molecular
evolution models, we do not know the number of states
each character can take and the number of states is not
constant for different characters. We consider two ways
to approach this problem. First, we can assume that the
number of possible states for a character is equal to
the number of different observed states. Typically, one
would count the number of different states in the data
matrix for the character. Here, we obtained the number
of observed states from the larger data matrix used
in Ksepka et al. (2012) containing 13 outgroup species.
Having the number of observed characters for each
character, we partition the morphological data matrix
in groups of characters having the same number of
states and apply a distinct substitution model of the
corresponding dimension to each partition. Another
approach is to treat all the characters as evolving under
the same model. The model dimension in this case
is the maximum of the numbers of states observed
for characters in the matrix. We refer to the first
case as “partitioned mode” and to the second case
as “unpartitioned model”. Another difference comes
from the fact that typically only variable characters are
recorded. Thus, the second adjustment to the model
accounts for the fact that constant characters are never
coded. This model is called the Mkv model (Lewis 2001).
We compared a model which assumed no variation in
substitution rates of different morphological characters
with a model using gamma distributed rates with
a shared shape parameter for all partitions. We also
compared a strict clock model and an uncorrelated
relaxed clock model (Drummond et al. 2006) with
a shared clock rate across partitions. To assess the
impact of different parameterizations of the FBD model

that induce slightly different prior distributions of
trees we also considered two parameterizations (d,
,s,
	–parameterization vs. �,�,�,	–parameterization).

We completed a model selection analysis comparing
different combinations of the assumptions for the
Lewis Mk model, morphological substitution rates, and
FBD model assumptions by running eight analyses of
morphological data with different model settings. We
then estimated the marginal likelihood of the model in
each analysis using a path sampling algorithm (Baele
et al. 2012), with 20 steps and �-powers derived as
quantiles of the Beta distribution with �b =0.3 and �b =
1.0. The traditional model selection tool is a Bayes factor,
which is the ratio of the marginal likelihoods of two
models: M1 and M2. A Bayes factor greater than one
indicates that model M1 is preferred over model M2.
Following this logic, the model that provides the best
fit is the model with the largest marginal likelihood.
The model combinations with marginal likelihoods are
described in Table 2.

Posterior Predictive Analysis
For most of the bifurcation events in trees from the

posterior samples of the penguin analyses only one
lineage survives, whereas another lineage goes extinct.
This suggests a non-neutrality in the evolution of the
populations. To assess whether the FBD model, which
assumes all lineages in the tree develop independently,
fits the data analyzed here, we performed the posterior
predictive analysis following (Drummond and Suchard
2008) under model 8 in Table 2. The idea of such an
analysis is to compare the posterior distribution of trees
to the posterior predictive distribution (Gelman et al.
2013) and this type of Bayesian model checking has
been recently developed for a range of phylogenetic
approaches (Bollback 2002; Rodrigue et al. 2009; Brown
2014; Lewis et al. 2014). The posterior predictive
distribution can be approximated by the sample of trees
simulated under parameter combinations drawn from
the original posterior distribution. Out of computational
convenience and similar to calculating P(H|�̄,M) for the
Bayes factors, we conditioned the posterior predictive
distribution on having sampled fossils within ranges, �̄,
used in the original analysis.

A way to compare posterior and posterior predictive
distributions is to consider various tree statistics and
calculate the tail-area probabilities by calculating the
pB probability, which is simply the proportion of times
when a given test statistic for the simulated tree
exceeds the same statistic for the tree from the posterior
distribution corresponding to the same parameters.
Extreme values of pB, that is, values that are less than
0.05 or greater than 0.95, would indicate the data favor
a non-neutral scenario. For this analysis, we considered
tree statistics which can be grouped into two categories:
statistics that describe the branch length distribution
and the tree shape. The test statistics and corresponding
pB-values are summarized in Table 3.

http://dx.doi.org/10.5061/dryad.44pf8
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TABLE 1. The posterior probability of a fossil’s placement in the
crown (only for fossils with non-zero probability)

Fossila Probability

Spheniscus megaramphus 0.9992
Spheniscus urbinai 0.9991
Pygoscelis grandis 0.9928
Spheniscus muizoni 0.9201
Madrynornis mirandus 0.9007
Marplesornis novaezealandiae 0.1652
Palaeospheniscus bergi 0.0001
Palaeospheniscus biloculata 0.0001
Palaeospheniscus patagonicus 0.0001
Eretiscus tonnii 0.0001

aThe six fossils with probabilities greater than 0.05 were used for the
total-evidence analysis without stem fossils.

Total-Evidence Analysis of Penguins
For the total-evidence analysis of the penguin data

set, we chose the substitution and clock models for
morphological character evolution with the largest
marginal likelihood from the model comparison analysis
(analysis 8 in Table 2). This model suggests that the data
are partitioned in groups of characters with respect to the
number of observed states. Each partition evolves under
the Lewis Mkv model and the substitution rate varies
across characters according to a Gamma distribution
shared by all partitions. The morphological clock is
modeled with an uncorrelated relaxed clock model with
log-normal distributed rates. For molecular data we
assume a general-time reversible model with gamma-
distributed rate heterogeneity among sites (GTR+)
for each of the five loci with separate rate, frequency,
and gamma shape parameters for each partition. A
separate log-normal uncorrelated relaxed clock model
is assumed for the molecular data alignment. Each
branch is assigned a total clock rate drawn from a log-
normal distribution and this rate is scaled by a relative
clock rate for each gene so that relative clock rates for
five partitions sum up to one. We also ran the same
analysis under the strict molecular clock. We assumed
the FBD model as a prior distribution for time trees with
uniform prior distributions for turnover rate and fossil
sampling proportion, log-normal prior distribution for
net diversification rate with 95% highest probability
density (HPD) interval covering [0.01,0.15] estimated in
(Jetz et al. 2012) and sampling at present probability
fixed to one since all modern penguins were included
in the analyses. We also analyzed this data set under the
birth–death model without sampled ancestors (Stadler
2010).

In addition to analyzing the full data set, we performed
a separate analysis of only living penguins and the
crown fossils, to examine the effect of ignoring the
diversification of fossil taxa along the stem lineage.
Crown fossils were selected if the fossil lineage was a
descendant of the MRCA of all extant species with a
posterior probability greater than 0.05 in the full analysis
(i.e., the analysis with stem and crown fossils). Thus, this
analysis includes six fossils (listed in Table 1) and all

living penguins. For this analysis we did not condition
on recording only variable characters (i.e., we used the
Mk model) because after removing a large proportion of
stem fossils, some characters become constant.

Summarizing Trees
First, we summarized the posterior distribution

of full trees using summary methods from (Heled
and Bouckaert 2013). As a summary tree we used
the maximum sampled-ancestor clade credibility tree
(MSACC tree). An MSACC tree is a tree from the
posterior sample that maximizes the product of posterior
clade probabilities. Here, a clade denotes two types of
objects. The first type is a monophyletic set of taxa
with a bifurcation node as the MRCA. Such clades are
completely defined by a set of taxon labels {B1,...,Bn}
meaning that we do not distinguish between clades with
the same taxon set but different topologies. The second
type is a monophyletic set of taxa with a two-degree
sampled node as the MRCA. This can happen when one
of the taxa in the group is a sampled ancestor and it is
ancestral to all the others in the clade. Then this taxon
will be the MRCA of the whole group assuming it is an
ancestor to itself. These clades are defined by the pair
(Bi,{B1,...,Bn}) where {B1,...,Bn} are taxon labels and
Bi, 1≤ i≤n, is the taxon that is ancestral to all taxa in the
clade.

Second, we removed all fossil lineages from the
posterior trees thereby suppressing two-degree nodes
and then summarized the resulting trees (which are
strictly bifurcating) with a maximum clade credibility
tree with common ancestor ages. To assign a common
ancestor age to a clade, we consider a set of taxa
contained in the clade and find the age of the MRCAs
of these taxa in every posterior tree (including the trees
where these taxa are not monophyletic) and take the
mean of these ages.

RESULTS AND DISCUSSION

Model Comparison
For each of the eight analyses listed in Table 2, we

plotted the probability of each fossil to be a sampled
ancestor (Figure 1). This shows that assumptions about
the clock and substitution models as well as the tree
prior model contribute to identifying a fossil as a
sampled ancestor. The comparison of the marginal
likelihoods for different assumptions about the clock and
substitution models shows that the substitution model
where characters are partitioned in groups with the
same number of states and with gamma variation in the
substitution rate across characters is the best model for
this data-set.

Posterior Predictive Analysis
The posterior predictive analysis did not reject the

FBD process, where lineages evolve independently of
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TABLE 2. The tree prior parameterization, clock, and substitution models used for eight analyses of penguin
morphological data with marginal likelihoods for model testing

# Partitions Gamma Lewis model Clock Parameterization Marginal log-likelihood
from two runs

1 Mk Strict d,
,s −2644.21, −2644.16
2 G Mk Strict d,
,s −2641.62, −2642.94
3 P Mk Strict d,
,s −1875.35, −1876.3
4 P G Mk Strict d,
,s −1859.84, −1860.37
5 P Mk Strict �,�,� (�<�) −1874.14, −1876.14
6 P Mkv Strict d,
,s −1873.28, −1871.63
7 P G Mkv Strict d,
,s −1842.82, −1842.2
8a P G Mkv Relaxed d,
,s −1827.27, −1828.02

aThe analysis under model 8 has the largest marginal log-likelihood and was thus the model best supported by
the data when evaluated using Bayes factors.
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3 P dns

4 P G dns

5 P lmp

6 P Mkv dns

7 P G Mkv dns

8 P G Mkv R dns

FIGURE 1. Posterior probabilities of fossils to be sampled ancestors for eight models summarized in Table 2. In the legend, P stands for the
partitioned model, G for gamma variation across characters, Mkv for conditioning on variable characters, R for relaxed clock model, dns for d,

, and s tree prior parameterization, lmp for �, �, and � tree prior parameterization, and the numbers correspond to analyses in Table 2.

each other, as an adequate model for describing the
speciation–extinction–fossilization sampling process for
these data. The pB values for all nine statistics were
within the [0.26,0.83] interval (Table 3). The plots of
the posterior and posterior predictive distributions for
several statistics (Fig. 2) show that there is no obvious
discrepancy in these distributions. Thus, there is no

signal in the data to reject a neutral diversification of
penguins.

In this analysis, we conditioned the posterior
predictive distribution to have the given age ranges.
To assess the overall fit of the FBD model, one needs
to perform a posterior predictive analysis where the
posterior predictive distribution is not conditioned on
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TABLE 3. The posterior predictive analysis of the penguin data for branch length and tree-shape statistics indicating no significant difference
in the posterior and posterior predictive tree distributions for model 2 (in Table 2)

Description Notation pB-valuea,b

Branch length distribution statistics
The total length of all branches in the tree T 0.83
The ratio of the length of the subtree induced by extant taxa and the total tree

length
	T

trunk 0.33

Genealogical Fu and Li’s D calculated as the normalized difference between
external branch length in the tree with suppressed sampled ancestor nodes and
total tree length.

DF 0.5

The time of the MRCA of all taxa tMRCA 0.57
The time of the MRCA of all extant taxa tEMRCA 0.46
Tree shape statistics
The maximum number of bifurcation nodes between a bifurcation node and the

leaves summed over all bifurcation nodes except for the root
B1 0.75

Coless’s tree imbalance index calculated as the difference between the numbers of
leaves on two sides of a node summed over all internal bifurcation nodes and
divided by the total number of leaves

Ic 0.28

The number of cherries (two terminal nodes forming a monophyletic clade,
sampled ancestors are suppressed)

Cn 0.54

The number of sampled ancestors SA 0.26

aA pB value is the proportion of times a given test statistic for the simulated tree exceeds the value of that statistic for the tree from the posterior
distribution.
bAll pB values are within [0.05, 0.95].

FIGURE 2. The posterior and posterior predictive distributions for the tree length, T, and genealogical DF statistics on the left and B1 tree
imbalance statistic and Colless’s tree imbalance index, Ic, on the right for model 8 in Table 2. The plots do not show obvious discrepancy in the
posterior and posterior predictive distributions of these statistics. The posterior predictive distribution for the branch length related statistics
(DF and T) is more diffuse than the posterior distribution although both distributions concentrate around the same area. The distributions of
the tree imbalance statistics almost coincide.

the age ranges nor on the number of sampled nodes. We
have not performed such an analysis.

Penguin Phylogeny
The MSACC tree (Fig. 3) shows that most of the

penguin fossils do not belong to the crown clade and that
the crown clade Spheniscidae originated only ∼12.7 Ma
ago. The posterior probabilities of most clades including
fossils are low, reflecting the large uncertainty in the
topological placement of the fossil taxa, whereas many

clades uniting extant taxa receive substantially higher
posterior probabilities.

We calculated Bayes factors for all fossils to be sampled
ancestors assuming the prior probability that a fossil
is a sampled ancestor is defined by the tree prior
model conditioned on the number of sampled extant
and fossil species and assigned sampling intervals.
Adding comparative (morphological and molecular)
data to the sample size and sampling intervals provides
positive evidence that the fossil taxa representing the
species Palaeospheniscus patagonicus and Icadyptes salasi
are sampled ancestors. Eretiscus tonnii, Marplesornis
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FIGURE 4. The evidence for fossils to be sampled ancestors. The samples above the shaded area (i.e., with log Bayes Factors greater than 1) have
positive evidence to be sampled ancestors and below the shaded area (log Bayes factors lower than −1) have positive evidence to be terminal
nodes.

novaezealandiae, Paraptenodytes antarcticus, and Pygoscelis
grandis show positive evidence to be terminal samples
(Fig. 4).

Due to the large uncertainty in the topological
placement of fossil taxa, the relationships displayed in
the summary tree are not the only ones supported by the
posterior distribution. Thus, in some cases an alternate
topology cannot be statistically rejected and a careful
review of the entire population of sampled trees is
required to fully account for this. Below, we summarize
the features of the MSACC topology that differ from
previous estimates of penguin phylogeny, keeping this
uncertainty in mind.

The relationships within each genus are similar to
those reported in previous parsimony analyses of the
data-set (Ksepka et al. 2012), with some exceptions
within the crested penguin genus Eudyptes. These
agree with the results of Baker et al. (2006) based on
Bayesian analysis of the same molecular loci (without
morphological data), though it should be noted that
our Bayesian analysis shows a degree of uncertainty in
the resolution of the Eudyptes clade. The summary tree
obtained after removing fossil taxa displays a different

set of relationships within Eudyptes with high posterior
probabilities (Fig. 5).

Allowing fossils to represent ancestors yields several
interesting results. Although there is no evidence in
comparative data to support an ancestral position for
Spheniscus muizoni (Fig. 4) the combined comparative
and temporal data yields the posterior probability of
0.61 that it is an ancestor of the extant Spheniscus
radiation (i.e., in 61% of the posterior trees, this taxon
is a direct ancestor of the four extant Spheniscus species
and possibly some other species as well). The ancestral
position is consistent with the morphological data
set: S. muizoni preserves a mix of derived character
states that support placement within the Spheniscus
clade and primitive characters which suggests it falls
outside the clade formed by the four extant Spheniscus
species. Furthermore, at least for the discrete characters
sampled, it does not exhibit apomorphies providing
direct evidence against ancestral status.

Madrynornis mirandus is recovered as ancestor to the
Eudyptes + Megadyptes clade, though this placement
receives low posterior probability (0.15). This fossil
taxon was inferred as the sister taxon to Eudyptes
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FIGURE 5. The maximum clade credibility tree of extant penguins with common ancestor ages. The bars are the 95% HPD intervals for the
divergence times. The mean estimates and 95% HPD intervals are summarized in Supplementary Table 4 available on dryad. The numbers at
the bases of clades show the posterior probabilities of the clades (after removing fossil samples).

by several previous studies (Hospitaleche et al. 2007;
Ksepka and Clarke 2010; Ksepka et al. 2012); though
see (Chávez Hoffmeister et al. 2014), and so had been
recommended as a calibration point for the Eudyptes–
Megadyptes divergence (Ksepka and Clarke 2010) and
used as such (Subramanian et al. 2013). In our analysis,
a Megadyptes + Eudyptes clade excluding Madrynornis is
present in all posterior trees, that is, the results reject
the possibility that this taxon is the sister taxon to
Eudyptes and its use as a calibration point is in need
of further scrutiny. Our results indicate a 0.9 posterior
probability that M. mirandus belongs in the crown, but
do not provide solid support for the precise placement of
this fossil taxon. Presumably the position of M. mirandus
outside of Eudyptes + Megadyptes clade is at least partially
attributable to the temporal data—its age means a more
basal position is more consistent with the rest of the
data.

Most of the clades along the stem receive very low
posterior probabilities, which is not unexpected given
that some stem penguin taxa remain poorly known,
with many morphological characters unscorable. These
clades correspond to the large polytomies from Ksepka
et al. (2012) (polytomies are not allowed in the summary
method we used here). Of particular note is the
placement of Palaeospheniscus bergi and Palaeospheniscus
biloculata on a branch along the backbone of the tree
leading to all modern penguin species. Palaeospheniscus
penguins share many synapomorphies with crown
penguins and only a single feature in the matrix
(presence of only the lateral proximal vascular foramen
of the tarsometatarsus) contradicts this possibility (and
supports their forming a clade with E. tonnii in the
strict consensus of Ksepka et al. 2012). The posterior
distribution of our analysis supports a clade containing
the three Palaeospheniscus species and E. tonnii with
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probability 0.06, and so this relationship cannot be ruled
out.

Overall, the estimated clades with large posterior
probabilities (greater than 0.5) agree with those clades
previously estimated from the same data set using
parsimony methods (Ksepka et al. 2012). Low posterior
probability values are due to the sparse morphological
data (and complete lack of molecular data) for many
early stem taxa. Several species such as Palaeeudyptes
antarcticus are based on very incomplete fossils, in
some cases a single element, and so we view the
relationships estimated for deep stem penguins as
incompletely established for the time being. Despite
the high degree of uncertainty in the phylogenetic
relationships of fossil species, the overall support for
the general scenario placing most fossil penguins along
the stem with a recent appearance of crown penguins
is strong. To better describe, measure, and visualize
the topological uncertainty of total-evidence analyses,
methods similar to Billera et al. (2001), Owen and Provan
(2011), and Gavryushkin and Drummond (2016) should
be developed for serially sampled trees with sampled
ancestors.

Divergence Dates
We estimated the divergence dates for extant penguins

(Fig. 5 and Table 4 Supplementary available on dryad).
In general, the estimates are younger than those reported
in previous studies: (Baker et al. 2006; Brown et al.
2008; Subramanian et al. 2013; Jarvis et al. 2014; Li
et al. 2014). Baker et al. (2006) used the penalized-
likelihood approach (Sanderson 2002) with secondary
calibrations, and estimated the origin of crown penguins
to be 40.5 Ma (95% confidence interval: 34.2–47.6 Ma).
Brown et al. (2008; Fig. 4) estimated this age at ∼50 Ma
using a Bayesian approach with uncorrelated rates and
20 calibrations distributed through Aves, including the
stem penguin Waimanu manneringi. Subramanian et al.
(2013) estimated a much younger crown age by using a
Bayesian analysis with node calibration densities based
on four fossil penguin taxa: W. manneringi, M. mirandus,
S. muizoni, and P. grandis. Their estimate of the age
of the MRCA of the extant penguins was 20.4 Ma
(95% HPD interval: 17–23.8 Ma) (Subramanian et al.
2013). Most recently, (Jarvis et al. 2014; Li et al. 2014)
estimated the age of the crown penguins at 23 Ma
(95% confidence interval: 6.9–42.8 Ma) using a Bayesian
method in MCMCTree (Dos Reis and Yang 2011) based
on genomes from two penguin species (Aptenodytes
forsteri and Pygoscelis adeliae) and calibrations for higher
avian clades including W. manneringi. Notably, this last
date can be considered applicable to the crown only if
Aptenodytes or Pygoscelis is the sister taxon to all other
penguins, otherwise this date applies to a more nested
node, implying an older age for the crown.

Our total-evidence analysis under the FBD model
suggests that the MRCA is younger than any of these
previous estimates at 12.7 Ma (95% HPD interval

[9.9,15.7]; see Fig. 5 and Table 4 Supplementary available
on dryad). We assert that this is the best constrained
estimate of the age of the penguin crown clade to date,
because it avoids potential pitfalls related to the use of
secondary calibrations, samples all extant species, and
most importantly includes all reasonably complete fossil
taxa directly as terminals or sampled ancestors. This
final point is crucial, not only because including fossils
as terminals has been shown influence phylogenetic
accuracy under many conditions (e.g., Hermsen and
Hendricks 2008; Grande 2010; Hsiang et al. 2015), but
also because at least one fossil taxon—previously used
as a node calibration—was recovered at a more basal
position in our results. The small gap between our
12.7 Ma estimate for the MRCA of extant penguins
and the oldest identified crown fossil at ∼10 Ma is
consistent with the fossil record of penguins as a whole,
which includes a dense sampling of stem species from
∼60 to ∼10 Ma, and only crown fossils from ∼10 Ma
onwards. Moreover, our results suggest many extant
penguin species are the product of recent divergence
events, with 13 of 19 sampled species splitting from
their sister taxon in the last 2 myr. Penguins have a
relatively dense fossil record compared to other avian
clades, with thousands of specimens known from four
continents and spanning nearly the entirety of their
modern day geographical range. If crown penguins
originated at 20–50 Ma as implied by previous studies,
it would require major ghost lineages (Clarke et al.
2007; Clarke and Boyd 2014), and thus a modest to
extreme fossilization bias favoring the preservation of
stem penguin fossils and disfavoring the preservation of
crown penguin fossils. Such a bias is difficult to envision,
as both stem and crown penguins share a dense bone
structure and preference for marine habitats that would
suggest similar fossilization potential.

Inclusion of stem fossil diversity has a profound
impact on the inferred age of the penguin crown clade. To
demonstrate this effect, we performed a total-evidence
analysis including only living penguins and crown
fossils (i.e., fossil taxa identified as crown penguins in
our primarily analysis). Both the age estimate and the
inferred uncertainty in the MRCA age of crown penguins
increased substantially with the MRCA age shifting to
22.8 Ma (95% HPD interval: 14.2–33.6 Ma; Fig. 5). This
shows that including the stem-fossil diversity allows
for a better estimate of the crown age of penguins—
one that is more consistent with the fossil record.
Furthermore, these additional data points contribute to
better estimates of diversification parameters.

For the complete analysis of stem and crown taxa, the
mean estimate of the net diversification rate, d, was 0.039
with [0.002, 0.089] HPD interval although this estimate is
sensitive to the prior distribution (Supplementary Fig. 2
available on dryad), the turnover rate, 
, was 0.88 ([0.72,
1]) and the sampling proportion, s, was 0.23 ([0.06, 0.43]).

The posterior distribution for the scale parameter of
the log-normal distribution in the uncorrelated relaxed
clock model for the molecular alignment was bimodal
with a mode around 0.4 and a mode around zero. This
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suggested a strict molecular clock model might fit the
data. The additional analysis of this data set under the
strict molecular clock slightly shifted the estimates of the
time of the MRCA of crown penguins toward the past
although the posterior intervals largely overlap (Fig. 6).

Using the birth–death sampling model without
sampled ancestors (Stadler 2010) instead of the FBD
model shifted the estimated divergence times toward
the past (Fig. 6 and Supplementary Fig. 1 available on
dryad). Gavryushkina et al. (2014) showed in simulation
studies that ignoring sampled ancestors results in an
increase in the diversification rate. We can observe the
same trend here: the mean of the net diversification
rate for the analysis under the birth–death model
without sampled ancestors was 0.092 (95% HPD: [0.007,
0192]) compared to 0.039 ([0.002, 0.089]) for the FBD
model. Although we would expect a decrease in the
diversification rate in older trees on the same number of
extant tips, in the birth–death model without sampled
ancestors, a sampling event causes an extinction of the
lineage. Thus, the diversification rate (here, modeled
as the difference in the birth and death rates) does
not account for the extinction “by sampling”. The
mean estimate for (�−�−�), which better describes the
diversification rate in the birth–death model without
sampled ancestors, was 0.019 ([−0.061,0.099]).

Implications for Crown Penguin Evolution
With many extant penguin species inhabiting

extreme polar environments, penguin evolution is
often considered through the lens of global climate
change. The fossil record has revealed that, despite
their celebrated success in modern polar environments,
penguins originated during a warm period in Earth’s
history, and the first Antarctic penguins were stem
taxa that were distantly related to extant Antarctica
species and arrived on that landmass prior to the
formation of permanent polar ice sheets (Ksepka et al.
2006). However, our divergence estimates are consistent
with global cooling having a profound impact on later
stages of crown penguin radiation. The Middle Miocene
Transition at ∼14 Ma marks the onset of a steady decline
in sea surface temperature, heralding the onset of full-
scale ice sheets in Antarctica (Zachos et al. 2001; Hansen
et al. 2013; Knorr and Lohmann 2014). Expansion of
Antarctic ice sheets may have opened a new environment
for Aptenodytes and Pygoscelis, the most polar-adapted
penguin taxa (including four of the five species that
breed in continental Antarctica). Previous studies have
placed Aptenodytes and Pygoscelis on basal branches of
the penguin crown, leading to the hypothesis that crown
penguins originated in Antarctica and spread to lower
latitudes as climate cooled (Baker et al. 2006). However,
the geographical distribution of stem fossils suggests
instead that Aptenodytes and Pygoscelis secondarily
invaded Antarctica, taking advantage of a novel
environment (Ksepka et al. 2006). Our analysis provides
additional support for this secondary colonization
hypothesis by uniting Aptenodytes and Pygoscelis as a

clade and revealing a very recent age for this Antarctic
group at 9.8 Ma (Fig. 5), indicating they did not radiate
until well after permanent ice sheets were established.

Morphological Clock
We assume that clock models can be applied to

morphological data. A recent study by Lee et al.
(2014a) confirms that younger taxa undergo more
morphological evolutionary change. Most previous
total-evidence or morphological analyses used relaxed
clock models for morphology evolution (Pyron 2011;
Ronquist et al. 2012a; Lee et al. 2014a, 2014b; Dembo
et al. 2015; Zhang et al. 2016). In many studies (Beck and
Lee 2014; Lee et al. 2014a; Dembo et al. 2015), including
this study, model comparison analyses favored a relaxed
morphological clock over a strict morphological clock.

The estimated coefficient of variation for the log-
normal distribution of the morphological clock rates
in the penguin analysis was 1.15 indicating a high rate
variation among the branches. However, in our analysis,
the choice of the morphological clock model did not
influence much the estimate of the parameter of the
primary interest—the age of the crown radiation. Using
the relaxed clock model as opposed to the strict clock
model only slightly shifted the age toward the past and
inflated the 95% HPD interval (Fig. 6, analyses 7 and 8).

Many total-evidence analyses inferred implausibly
old divergence dates (Ronquist et al. 2012a; Slater
2013; Wood et al. 2013; Beck and Lee 2014). Beck and
Lee (2014) suggested that oversimplified modeling of
morphological evolution and a relaxed morphological
clock may result in overestimated divergence times. Our
analysis did not show this and we, on the contrary,
estimated a much younger age of the crown penguin
radiation than had been previously estimated. This could
be attributed to the large number of stem fossils in our
analysis, given that excluding these fossils leads to a
much older estimate. The overestimated ages can also
be explained by sampling biases (Zhang et al. 2016) or
using inappropriate tree prior models. Using a birth–
death model without sampled ancestors in our analysis
slightly shifted the ages of the crown divergences toward
the past (Fig. 6 and Supplementary Fig. 1 available on
dryad).

Sampled Ancestors
We examined the total posterior probability of a fossil

species to be a sampled ancestor, that is, a direct ancestor
to other sampled fossil or extant species. If an ancestor–
descendant pair is in question, one can also estimate the
posterior probability of one species to be an ancestor to
another species or a group of species as we calculated in
the case of the probability of the S. muizoni representing
an ancestor of extant Spheniscus radiation.

The evidence for ancestry comes from morphological
data, fossil occurrence times and prior distributions for
the parameters of the FBD model and morphological
evolution model. Here, we used uniform prior
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FIGURE 6. The ages of the MRCAs of the extant penguin taxa for the eight analyses (Table 2) of morphological data, total-evidence analysis
with all fossils under relaxed (8+DNA R) and strict (8+DNA S) molecular clocks, total-evidence analysis under the birth–death model without
sampled ancestors (8BD+DNA R), and total-evidence analysis with crown fossils only. Abbreviations in the names of analyses are the same as
in Figure 1.

distributions except for the net diversification rate and
morphological evolution rate.

The analysis of the penguin data set shows a large
number of potential sampled ancestors. The Bayes
factors calculated here showed the ancestry evidence
contained in the morphological data. The evidence
coming from the occurrence times or from all data
together remains to be assessed. We hypothesize that
the large number of sampled ancestors is due to the
temporal pattern of the penguin fossils. We additionally
analyzed dinosaur (Lee et al. 2014b), trilobite (Congreve
and Lieberman 2011), and Lissamphibia (Pyron 2011)
data-sets with large proportions of missing characters
where we only detected up to four sampled ancestors
(out of ∼40–120 fossils; data not shown). An analysis
by Zhang et al. (2016) of Hymenoptera also did not
show many sampled ancestors. Thus, the abundance of
sampled ancestors in the penguin phylogeny is not likely
to be due to the paucity of the morphological data.

Further Improvements
Here we used the FBD model, which is an

improvement over previously used uniform, Yule,
or birth–death models for describing the speciation
process. However, other more sophisticated models
may improve the inference or fit better for other
data sets. The skyline variant of the FBD model
(Stadler et al. 2013; Gavryushkina et al. 2014; Zhang
et al. 2016) allows for stepwise changes in rates (i.e.,

diversification, turnover, and fossil sampling) over
time. Accounting for the possibility of changes in
fossil sampling rate, �, over time might be important
for analyses considering groups of deeply diverged
organisms where poor fossil preservation may result
in underestimates of divergence times if the sampling
rate is considered constant. Furthermore, models that
allow age-dependent (Lambert 2010; Hagen et al. 2015)
or lineage-dependent (Maddison et al. 2007; Alfaro et al.
2009; Alexander et al. 2016) speciation and extinction
rates while appropriately modeling fossil sampling
may also improve divergence dating and estimation of
macroevolutionary parameters.

Another direction of method development is
modeling morphological character evolution—a topic
that has sparked numerous debates (e.g., Goloboff
2003; Spencer and Wilberg 2013). A recent study by
Wright and Hillis (2014) showed that Bayesian methods
for estimating tree topologies using morphological
data—even under a simple probabilistic Lewis Mk
model—outperform parsimony methods, partly
because rate variation is modeled. Here, we considered
two schemes to assign a number of possible states to a
character. The model comparison analysis favored the
model where the number of possible states is equal
to the number of observed states in a character. A
more accurate modeling would be to consider each
character and assign the number of states on the basis
of the character description (e.g., characters for traits
that are either present or absent will be assigned
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two states) or use model averaging within an MCMC
analysis where each character is assigned different
number of states during the MCMC run. Moreover,
it may also be important to appropriately model
ascertainment bias when using the Lewis Mk model.
These extensions include accounting for the absence
of invariant and parsimony uninformative characters
in the morphological data matrix (Koch and Holder
2012). Importantly, more biologically appropriate
models of phenotypic characters are needed to advance
phylogenetic methods for incorporating fossil data
(e.g., Felsenstein 2005; Revell 2014). The total-evidence
method with FBD can also be used to estimate the past
evolutionary relationship between extinct species where
only morphological data is available (Lee et al. 2014a).

We assigned age ranges to different fossils in differing
ways. Some of the fossil species are known from only
one fossil specimen and in this case, we assigned the
age range based on the uncertainty related to the dating
of the layer in which the fossil was found. For other
species, there are a number of fossils found in different
localities. In this case, we derived the age interval from
probable ages of all specimens. In order to strictly follow
the sampling process assumed by the FBD model, it
would be necessary to treat every known fossil specimen
individually and include all such specimens into an
analysis. Unfortunately, this would lead to enormous
data sets with thousands of taxa, most with very high
proportions of missing data. However, in cases where
a large number of fossils are known from the same
locality and are thus very close in age and potentially
belong to the same population, this group of fossils may
be treated as just one sample from the relevant species
at that time horizon. Such improved modeling would
require devoting considerable effort to differentiating
fossils and recording characters for particular specimens,
rather than merging morphological data from different
fossil specimens believed to belong to the same species.
This could, however, lead to more accurate inference and
better understanding of the past diversity.

Finally, our analysis focused on a matrix sampling
all fossil penguins represented by reasonably complete
specimens. Many poorly known fossil taxa have also
been reported, along with thousands of isolated bones.
Finding a balance between incorporating the maximum
number of fossils, which inform sampling rate and
time, and the computational concerns with adding large
numbers of taxa with low proportions of informative
characters will represent an important challenge for
analyses targeting penguins and other groups with
extensive fossil records.

We advocate the use of the total-evidence approach
with models that allow sampled ancestors when
estimating divergence times. This approach may offer
advantages not only over node calibration methods that
rely on first analyzing morphological data to identify
calibration points and then calibrating phylogenies with
ad hoc prior densities, but also over total-evidence
methods that do not account for fossils that are sampled
ancestors. Many recent applications of total-evidence

dating have yielded substantially older estimates than
node calibration methods (e.g., Ronquist et al. 2012a;
Slater 2013; Wood et al. 2013; Beck and Lee 2014; Arcila
et al. 2015). Among other explanations (Beck and Lee
2014; Zhang et al. 2016), using tree priors that do not
account for sampled ancestors could have contributed
to the ancient dates.
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