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OuTLINE
Overview of divergence time estimation

® Relaxed clock models — accounting for variation in
substitution rates among lineages

® Tree models — lineage diversification and sampling

BEAST v2.2.0 Tutorial — Divergence-time estimation
under birth-death processes
http://phyloworks.org/workshops/divtime.html

Choose one:
® Dating Bear Divergence Times with the Fossilized
Birth-Death Process

® Estimating Epidemiological Parameters of an Ebola
Outbreak



http://phyloworks.org/workshops/divtime.html

A TIME-ScaLE For EvoLuTion

Phylogenetic divergence-time
estimation

What was the spacial and
climatic environment of ancient
angiosperms?

How has mammalian body-size
changed over time?

How has the infection rate of
HCV in Egypt changed over

time?

Is diversification in Caribbean
anoles correlated with ecological
opportunity?

How has the rate of molecular

evolution changed across the
Tree of Life?

Understanding Evolutionary Processes

(Antonell & Sanmartin.Syst. Biol. 2011)

Molecular evolution

£

(Nabholz, Glemin, Galter. MBE 2008)

Trait evolution

=

Lartilot & Delsuc. Evolution 2012)

Diversification

(Mahler,Revel, Gl Evolution 2010)

Epidemiology

(tadier et al. PNAS 2013)]




Divergence TIME EsTIMATION

Goal: Estimate the ages of interior nodes to understand the
timing and rates of evolutionary processes

Model how rates are
distributed across the tree

Describe the distribution of
speciation events over time

External calibration
information for estimates of
absolute node times
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A TIME-ScaLE For EvoLuTion

Phylogenetic trees can provide both topological information
and temporal information

=

sawIopwIS

Homo
Pan
Gorilla
Pongo
Macaca
allthrix

Loris

Varecia
Eulemur

Lemur
Hapalemur

P

Lepilemur

Cheirogaleus
irza

M. murinus
M. griseorufus
(M. myoxinus
M. berthae

M. tavaratra

M. rufus2

M. sambiranensis
M. ravelobensis

snqesosoy

Cretaceous | Paleogene [ Neogene Ja
100 80.0 200 00

60.0 400
Time (Millions of years)

Understanding Evolutionary Processes (Yang & Yoder Syst. Biol. 2003; Heath et al. MBE 2012)



THE GLoBaL MoLecuLAr CLock

Assume that the rate of
evolutionary change is A B C
constant over time

(branch lengths equal
percent sequence
divergence)

(Based on slides by leff Thorne; http://statgen.ncsu.edu/thorne/compmolevo.html)



THE GLoBaL MoLecuLAr CLock

A B C

We can date the tree if we
know the rate of change is

1% divergence per 10 My

(Based on slides by leff Thorne; http://statgen.ncsu.edu/thorne/compmolevo.html)



THE GLoBaL MoLecuLAr CLock

If we found a fossil of the A B C
MRCA of B and C, we can
use it to calculate the rate

of change & date the root

of the tree

(Based on slides by leff Thorne; http://statgen.ncsu.edu/thorne/compmolevo.html)



RejecTing THE GLoBaL MoLecuLAar CLock

Rates of evolution vary across lineages and over time

Mutation rate:
Variation in

® metabolic rate

® generation time

® DNA repair

Fixation rate:
Variation in

® strength and targets of
selection

® population sizes



UNCONSTRAINED ANALYSIS

Sequence data provide
information about branch

Sequence
Data

lengths

In units of the expected # of
substitutions per site

branch length = rate x time

Phylogenetic Relationships




RATE anD TIME

)
The sequence data
provide information o
about branch length branch length = 0.5
g 3r
o
for any possible rate, 5
there's a time that fits & 2f time 08 _
the branch length
perfectly i
0 > L L 1 —
0 1 2 3 4 5
Branch Time

(based on Thorne & Kishino, 2005)



RAaTE AnD TIME

The expected # of substitutions/site occurring along a
branch is the product of the substitution rate and time

—

i
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length = rate x time

length = rate

E.
=

length = time

Methods for dating species divergences estimate the

substitution rate and time separately




BAYEsIAN DivergeNce TIME EsTIMATION

{:[r—:':
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length = rate length = time
R = (7“1,7"2,7"3,...,7“2]\772)
A = ((11, Ao, ag ----- aN—l)

N = number of tips



BAYEsIAN DivergeNce TIME EsTIMATION
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length = time
R = (r,rars...,TaN—2)
A = (ay,a5,a,..., an_,)

N = number of tips



BAYEsIAN DivergeNce TIME EsTIMATION

Posterior probability

f(R, A6z, 64,65 D V)

R Vector of rates on branches

A Vector of internal node ages
Or,0.4,0s Model parameters

D Sequence data

v Tree topology



BAYEsIAN DivergeNce TIME EsTIMATION

f(R’ A, GR, 6./41 65 | D) =

fDIR A f(R|0r) F(A]84) f(65)
f(D)

f(D|R, A bR 64,6) Likelihood

f(R|6r) Prior on rates
f(A|64) Prior on node ages
f(8s) Prior on substitution parameters

f(D) Marginal probability of the data



BAYEsIAN DivergeNce TIME EsTIMATION

Estimating divergence times relies on 2 main elements:

® Branch-specific rates: f(R | 6r)

®* Node ages: f(A|84,C)



MobpeLiNng RATE VARIATION

Some models describing lineage-specific substitution rate
variation:

® Global molecular clock (Zuckerkandl & Pauling, 1962)

® Local molecular clocks (Hasegawa, Kishino & Yano 1989;
Kishino & Hasegawa 1990; Yoder & Yang 2000; Yang & Yoder
2003, Drummond and Suchard 2010)

® Punctuated rate change model (Huelsenbeck, Larget and
Swofford 2000)

® Log-normally distributed autocorrelated rates (Thorne,
Kishino & Painter 1998; Kishino, Thorne & Bruno 2001; Thorne &
Kishino 2002)

® Uncorrelated/independent rates models (Drummond et al.
2006; Rannala & Yang 2007; Lepage et al. 2007)

® Mixture models on branch rates (Heath, Holder, Huelsenbeck
2012)

Models of Lineage-specific Rate Variation



GLoBaL MoLecuLAar CLock

The substitution rate is _:

constant over time

All lineages share the same
ot —__

branch length = substitution rate
low I high

Models of Lineage-specific Rate Variation (Zuckerkand! & Pauling, 1962)



GLoBaL MoLecuLAar CLock

gamma

—_—
—

rate prior distribution

A

A rate

to the rest N
of the model Z
]

S

(Zuckerkand! & Pauling, 1962)

Models of Lineage-specific Rate Variation



ReLaxep-CLock MobELs

To accommodate variation in substitution rates
‘relaxed-clock” models estimate lineage-specific substitution
rates

® Local molecular clocks
® Punctuated rate change model
® Log-normally distributed autocorrelated rates

Uncorrelated/independent rates models

Mixture models on branch rates



LocaL MoLecuLar CLocks

Rate shifts occur _:

infrequently over the tree

Closely related lineages
have equivalent rates
(clustered by sub-clades)

branch length = substitution rate
low I high

Models of Lineage-specific Rate Variation (Yang & Yoder 2003, Drummond and Suchard 2010)



LocaL MoLecuLar CLocks

Most methods for
estimating local clocks
required specifying the

number and locations of —:

rate changes a priori

Drummond and Suchard
(2010) introduced a
Bayesian method that

samples over a broad range —E

Of pOSSible random Iocal branch length = substitution rate
low I high
clocks

Models of Lineage-specific Rate Variation (Yang & Yoder 2003, Drummond and Suchard 2010)



AUTOCORRELATED RATES

Substitution rates evolve
gradually over time —
closely related lineages have
similar rates

drawn from a lognormal
distribution with a mean
equal to the parent rate

The rate at a node is —
| SRS

branch length = substitution rate
low I high

Models of Lineage-specific Rate Variation (Thorne, Kishino & Painter 1998; Kishino, Thorne & Bruno 2001)



AUTOCORRELATED RATES
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Models of Lineage-specific Rate Variation (Thorne, Kishino & Painter 1998; Kishino, Thorne & Bruno 2001)



PuncTuaTED RATE CHANGE

Rate changes occur along

lineages according to a _:

point process

At rate-change events, the

new rate is a product of —|

the parent’s rate and a

I-distributed multiplier _r

branch length = substitution rate
low I high

Models of Lineage-specific Rate Variation (Huelsenbeck, Larget and Swofford 2000)



INDEPENDENT/UNCORRELATED RATES

Lineage-specific rates are

uncorrelated when the rate

assigned to each branch is —

independently drawn from
an underlying distribution

—

branch length = substitution rate
low I high

Models of Lineage-specific Rate Variation (Drummond et al. 2006; Rannala & Yang 2007; Lepage et al. 2007)



INDEPENDENT/UNCORRELATED RATES

/\."\l
exp dist
Lineage-specific rates are

uncorrelated when the rate

exp dist

assigned to each branch is o

independently drawn from \md}a

an underlying distribution @
_____ joo

to the rest
of the model

Models of Lineage-specific Rate Variation (Drummond et al. 2006; Rannala & Yang 2007; Lepage et al. 2007)



INFINITE MixTURE MoDEL

Dirichlet process prior:
Branches are partitioned
into distinct rate categories

Models of Lineage-specific Rate Variation

[ —

branch length = substitution rate

BB EE

substitution rate classes

(Heath, Holder, Huelsenbeck. 2012 MBE)



INFINITE MixTURE MoDEL

Dirichlet process prior:
Branches are partitioned
into distinct rate categories

to the rest
of the model

Models of Lineage-specific Rate Variation (Heath, Holder, Huelsenbeck. 2012 MBE)



MobpeLiNng RATE VARIATION

These are only a subset of the available models for
branch-rate variation

® Global molecular clock

® Local molecular clocks

® Punctuated rate change model

® Log-normally distributed autocorrelated rates

Uncorrelated/independent rates models

Dirchlet process prior

Models of Lineage-specific Rate Variation



MobpeLiNng RATE VARIATION

Are our models appropriate across all data sets?

Miocene Plio [ Piei [ Hol
53 T8 001

epouvs EocendOtgorane
W g
Krause et al., 2008. Mitochondrial genomes reveal an
explosive radiation of extinct and extant bears near the
Santini et al., 2009. Did genome duplication drive the origin

Miocene-Pliocene boundary. BMC Evol. Biol. 8.
of teleosts? A comparative study of diversification in
ray-finned fishes. BMC Evol. Biol. 9.



MobpeLiNng RATE VARIATION

These are only a subset of the available models for
branch-rate variation

® Global molecular clock

® Local molecular clocks

® Punctuated rate change model

® Log-normally distributed autocorrelated rates
® Uncorrelated/independent rates models

* Dirchlet process prior

Considering model selection, uncertainty, & plausibility is
very important for Bayesian divergence time analysis

Models of Lineage-specific Rate Variation



BAYEsIAN DivergeNce TIME EsTIMATION

Estimating divergence times relies on 2 main elements:

® Branch-specific rates: f(R | 6r)

®* Node ages: f(A|84)

http://bayesiancook.blogspot.com/2013/12/two-sides-of -same-coin.html


http://bayesiancook.blogspot.com/2013/12/two-sides-of-same-coin.html

Priors oN THE TReEe AND Nobe AGEs

Relaxed clock Bayesian analyses require a prior distribution
on time ftrees

Lall
ﬁmw m
nr bl

Different node-age priors make different assumptions about
the timing of divergence events

Tree Priors



StocHAsTIC BRANCHING PROCESSES

Node-age priors based on stochastic models of lineage
diversification

Yule process: assumes a speciation rate il S\

constant rate of speciation,
across lineages

A pure birth process—every

node leaves extant T

descendants (no extinction)

time tree

Tree Priors



StocHAsTIC BRANCHING PROCESSES

Node-age priors based on stochastic models of lineage
diversification

Constant-rate birth-death

process: at any point in

time a lineage can speciate

at rate A or go extinct with
.—>T
a rate of u 7] @

time tree

Tree Priors



StocHAsTIC BRANCHING PROCESSES

Node-age priors based on stochastic models of lineage
diversification

Constant-rate birth-death
process: at any point in ; N ;
time a lineage can speciate (AS L4 CINEED
at rate A or go extinct with \ /
a rate of u

[[—®

time tree

Tree Priors



STocHAsTIC BRANCHING PROCESSES

Node-age priors based on stochastic models of lineage

diversification

Constant-rate birth-death

I

process: at any point in

time a lineage can speciate
at rate A or go extinct with

a rate of u

Tree Priors

fra L1l



StocHAsTIC BRANCHING PROCESSES

Different values of A and u lead
to different trees

Bayesian inference under these
models can be very sensitive to
the values of these parameters

Using hyperpriors on A and u
accounts for uncertainty in these
hyperparameters

Tree Priors

e azall At



StocHAsTIC BRANCHING PROCESSES

Node-age priors based on stochastic models of lineage
diversification

Birth-death-sampling
process: an extension of

[a],
the constant-rate birth-death

turnover

Bl o<inction rate

model that accounts for WA

random sampling of tips v
Conditions on a probability [T} O [r]

of sampling a tip, p time tree

Tree Priors



Priors oN Nobe TIMES

Sequence data are only informative on relative rates & times

Node-time priors cannot give precise estimates of absolute
node ages

== e

We need external information (like fossils) to provide
absolute time scale

Node Age Priors



CALIBRATING DivErRGENCE TIMES

Fossils (or other data) are necessary to estimate absolute
node ages

There is no information in

A B C
the sequence data for
absolute time

Uncertainty in the
placement of fossils




CALIBRATION DENSITIES

Bayesian inference is well suited to accommodating
uncertainty in the age of the calibration node

Divergence times are
calibrated by placing
parametric densities on
internal nodes offset by age
estimates from the fossil
record




AssiGNING FossiLs To CLADES

Misplaced fossils can affect node age estimates throughout
the tree — if the fossil is older than its presumed MRCA

Rock Crown

record clade
Present day

Oldest fossil A

Oldest fossils AB
Stem

AB
Oldest fossils ABC

B Age-indicative fossil
1-4 Suitable fossiliferous horizons O Otherfossil
@ Branching point of clade

Calibrating the Tree (figure from Benton & Donoghue Mol. Biol. Evol. 2007)



FossiL CALIBRATION

Age estimates from fossils
can provide minimum time
constraints for internal
nodes

Reliable maximum bounds
are typically unavailable

Calibrating Divergence Times

A

Minimum age

Time (My)



Prior DensiTIEs oN CALIBRATED NODES

Common practice in Bayesian divergence-time estimation:

Parametric distributions are I
typically off-set by the age
of the oldest fossil assigned
to a clade

l—' Uniform (min, max)
_J\ Log Normal (4, 62)

These prior densities do not

(necessarily) require N camawn

specification of maximum

bOUndS _/1 Exponential (1)

A

Minimum age Time (My)

Calibrating Divergence Times



Prior DensiTIEs oN CALIBRATED NODES

S S—-
T
L————=¢
Describe the waiting time _
between the divergence ”
event and the age of the
oldest fossil
< Minimum age Time (My)

Calibrating Divergence Times



Prior DensiTIEs oN CALIBRATED NODES

e S—
e
L———=¢
Overly informative priors >
can bias node age
estimates to be too young

Exponential (L)

Miimum age Time (My)

Calibrating Divergence Times



Prior DensiTIEs oN CALIBRATED NODES

—
—

Uncertainty in the age of I_‘:‘i
the MRCA of the clade
relative to the age of the
fossil may be better
captured by vague prior
densities

»
>

‘ Exponential (L)

Miimum age Time (My)

Calibrating Divergence Times



Prior DensiTIEs oN CALIBRATED NODES

Common practice in Bayesian divergence-time estimation:

Estimates of absolute node

ages are driven primarily b :
g . . p . y y I Uniform (min, max)
the calibration density :
oco. . _J\ Log Normal (y, 6%
Specifying appropriate :
densities is a challenge for I
most molecular biologists :
_/] Exponential (1)

Minimum age Time (My)

A

Calibration Density Approach



IMproVING FossiL CALIBRATION

We would prefer to
eliminate the need for
ad hoc calibration
prior densities

Calibration densities
do not account for
diversification of fossils

Fossil and Extant Bears

— -

(Krause et al. BMC Evol. Biol. 2008; Abella et al. PLoS ONE 2012)

Domestic dog
Spotted seal

Zaragocyon daamsi B, 4—
Ballusia elmensis 8,

Ursavus brevihinus 2,

Ursavus primaevus 2,

Giant panda

Ailurarctos lufengensis 8,
Agriarctos spp. 2,
Kretzoiarctos beatrix 2, <—
Indarctos vireli 8,

Indarctos arctoides £,
Indarctos punjabiensis £,
Spectacled bear

Giant short-faced bear 8, <—
Sloth bear

Brown bear

Polar bear



IMproVING FossiL CALIBRATION

We want to use all
of the available fossils

Example: Bears

12 fossils are reduced
to 4 calibration ages
with calibration density
methods

Fossil and Extant Bears

— -

(Krause et al. BMC Evol. Biol. 2008; Abella et al. PLoS ONE 2012)

Domestic dog

Spotted seal

Zaragocyon daamsi B, 4—
Ballusia elmensis 8,
Ursavus brevihinus 2,
Ursavus primaevus 2,

Giant panda

Ailurarctos lufengensis 8,
Agriarctos spp. 2,
Kretzoiarctos beatrix 2, <—
Indarctos vireli 8,

Indarctos arctoides £,
Indarctos punjabiensis £,
Spectacled bear

Giant short-faced bear 8, <—
Sloth bear

Brown bear

Polar bear



IMproVING FossiL CALIBRATION

Domestic dog

Spotted seal
Zaragocyon daamsi 2, <—

We want to use all
of the available fossils

Giant panda
Example . Bears Kretzoiarctos beatrix 8, €—
| 2 fossils are reduced

. . Spectacled bear
to 4 calibration ages St 3, 4
with calibration density osn

Cave bear & <—

methods

Am. black bear

Asian black bear

Fossil and Extant Bears (Krause et al. BMC Evol. Biol. 2008; Abella et al. PLoS ONE 2012)



IMproVING FossiL CALIBRATION

Domestic dog

Spotted seal
Zaragocyon daamsi 2,
Ballusia elmensis 8,
Ursavus brevihinus &,

Because fossils are Ursavus primaevus 2,

Giant panda

pa I’t Of t h e Ailurarctos lufengensis 8,
Agriarctos spp. 2,
Kretzoiarctos beatrix 8,

diversification process, oot

Indarctos arctoides %,

we can combine fossil "

Spectacled bear

calibration with Sl s bear
birth-death models i

Cave bear 8,

Sun bear

Asian black bear

Fossil and Extant Bears (Krause et al. BMC Evol. Biol. 2008; Abella et al. PLoS ONE 2012)



IMproVING FossiL CALIBRATION

Domestic dog

Spotted seal
Thi li Zaragocyon daamsi &,
Is relies on a Ballusia elmensis 2,
Ursavus brevininus 2,

branching model that Usevsspmaomes 8

Giant panda

a. CC O Ll n ts fo r Ailurarctos lufengensis 8,

Agriarctos spp. 2,
. t. t- t- Kretzoiarctos beatrix 8,
speciation, extinction, Indarctos vireti &
Indarctos arctoides £,

and rates of s 3

Spectacled bear

fossilization, oot e

Sloth bear
preservation, and s
recovery o

Asian black bear

Fossil and Extant Bears (Krause et al. BMC Evol. Biol. 2008; Abella et al. PLoS ONE 2012)



THE FossiLizep BiRTH-DeEaTH Process (FBD)

Improving statistical inference of absolute node ages

Eliminates the need to specify arbitrary
calibration densities

Better capture our statistical
uncertainty in species divergence dates

All reliable fossils associated with a
clade are used

Useful for calibration or ‘total-evidence’
dating

(Heath, Huelsenbeck, Stadler. PNAS 2014)



THE FossiLizep BiRTH-DeEaTH Process (FBD)

Recovered fossil specimens
provide historical
observations of the
diversification process that
generated the tree of
extant species

. . . )
150 100 50 0
Time

Diversification of Fossil & Extant Lineages (Heath, Huelsenbeck, Stadler. PNAS 2014)



THE FossiLizep BiRTH-DeEaTH Process (FBD)

The probability of the tree
and fossil observations
under a birth-death model
with rate parameters:

A = speciation

u = extinction

w = fossilization/recovery

. . . )
150 100 50 0
Time

Diversification of Fossil & Extant Lineages (Heath, Huelsenbeck, Stadler. PNAS 2014)



THE FossiLizep BiRTH-DeEaTH Process (FBD)

probability of fossil recovery
fossil recovery rate

The probability of the tree
and fossil observations
under a birth-death model
with rate parameters:

A = speciation
u = extinction

w = fossilization/recovery

Diversification of Fossil & Extant Lineages (Heath, Huelsenbeck, Stadler. PNAS 2014)



THE FossiLizep BiRTH-DeEaTH Process (FBD)

We use MCMC to sample
realizations of the
diversification process,
integrating over the
topology—including
placement of the
fossils—and speciation times

. . . )
150 100 50 0
Time

Diversification of Fossil & Extant Lineages (Heath, Huelsenbeck, Stadler. PNAS 2014)



Pencuin DiversiTYy IN Deep TIME

Can we improve our understanding of penguin evolution by
considering both extant and fossil taxa?
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Pencuin DiversiTYy IN Deep TIME
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Artistic icz for Scientific American
Fordyce, R.E. and D.T. Ksepka The Strangest Bird SclentlﬂcAmencan 307, 56 — 61 2012)

| Paleocene Eocene Oligocene Miocene | Pli. ’Ple




INTEGRATIVE BAYESIAN INFERENCE

Combine models for DNA sequence evolution, morphological
change, and fossil recovery over time to jointly estimate the
tree topology, divergence times, and lineage diversification
rates

Rate Matrix

Site Rates

Branch Rates

Rate Matrix
Site Rates
Branch Rates

it

Morphology
Fossil Occurrence Times




Pencuin DiversiTYy IN Deep TIME
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- Paraptenodytes antarcticus

MRCA Age Estimates by Previous Studies
Subramanian et al. (2013) Baker et al. (2006)
—
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£ Eudyptula
T )Aptenodytes
A

jc Pygoscelis

FBD Model: Posterior Density of MRCA Age
Gavryushkina et al. (2015)
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(Gavruyshkina, Heath, Ksepka, Welch, Stadler, Drummond. 2015. http://arxiv.org/abs/1506.04797)


http://arxiv.org/abs/1506.04797

INFERRING FBD TREES

Extensions of the fossilized birth-death process accommodate
variation in fossil sampling, non-random species sampling, &
shifts in diversification rates.

5

oooooooooo
mmmmmmm

With character data for both fossil & extant species, we
account for uncertainty in fossil placement



SkYLINE BIRTH-DEATH PROCESS

41_\_‘_
i S
:

A piecewise shifting model
where parameters change
over time

Used to estimate
epidemiological parameters
of an outbreak =

100 75
Days

Birth—death skyline plot reveals temporal changes
of epidemic spread in HIV and hepatitis C virus (HCV)

Tanja Stadler®'2, Denise Kiihnert>“", Sebastian Bonhoeffer®, and Alexei J. Drummond®*

(see Stadler et al. PNAS 2013 and Stadler et al. PLoS Currents Outbreaks 2014)



SkYLINE BIRTH-DEATH PROCESS

[ is the number of
parameter intervals

R; is the effective
reproductive number
for interval i €l

6 is the rate of
becoming
non-infectious

s is the probability of R; = Ai L S=p+1, s= v
sampling an individual pty w9y
after becoming
non-infectious



SkYLINE BIRTH-DEATH PROCESS

[ is the number of
parameter intervals

A; is the transmission
rate for interval i €/

y is the viral lineage
death rate

y is the rate each
individual is sampled

probabilty of sampling

et of becoming non-necious

Geath rate

N

NG

@ patient sample dales

Ai=R;0, p=9—sd, p=s0



SkYLINE BIRTH-DEATH PROCESS

probability of sampling

sampling rate

rate of becoming non-infectious
effective reproductive number

R EEEEEEEEEEEEEEsEEEEsEEEEEEEEEEEE,

"

o the rest
of the model



SkYLINE BIRTH-DEATH PROCESS

A decline in R over the
history of HIV-1 in the UK
is consistent with the
introduction of effective
drug therapies

After 1998 R decreased

- — R
below 1, indicating a %
o . . o —\\
declining epidemic ° : : .
1990 1995 2000

(Stadler et al. PNAS 2013)



QUESTIONS?




Exercises: CHoose Your OwN ADVENTURE

Dating Bear Divergence Estimating Epidemiological
Times with the Fossilized Parameters of an Ebola
Birth-Death Process Outbreak

sieag
wels.

N e

transmission rate

sleag uMoI)

75 150 125 100 7 50 2 0



